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A computational analysis of the non-linear vibration and thermal post-buckling of
a heated orthotropic annular plate with a central rigid mass is examined for the cases of
immovably hinged as well as clamped constraint conditions of the outer edge. First, based
on von Karman's plate theory and Hamilton's principles, the governing equations, in terms
of the displacements of the middle plane, of the problem are derived. Then, upon assuming
that harmonic responses of the system exist, the non-linear partial di!erential equations are
converted into the corresponding non-linear ordinary di!erential equations through
elimination of the time variable by using the Kantorovich time-averaging method. Finally,
by applying a shooting method, the fundamental responses of the non-linear vibration and
thermal post-buckling of the plate are numerically obtained. For some prescribed values of
the parameters, such as the material rigidity ratio, temperature rise and so on, the curves of
the fundamental frequency versus speci"ed amplitude and the thermal post-buckled
equilibrium paths of the plate are numerically presented.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

In recent years, the studies of dynamic response of plates exhibiting anisotropic
characteristics have received greater attention due to increasing use of "ber-reinforced
materials in aerospace, ocean engineering, electronic equipment, etc. [1}11]. Di!erent
researchers have used di!erent analytical or numerical methods; Laura et al. [1}3], Gupta
et al. [4, 5], Gunaratnam [6] and others analyzed linear free vibration and buckling of polar
orthotropic circular and annular plates. On considering the geometric non-linearity of the
plates, large-amplitude axisymmetric vibrations of this kind of plates were presented in
many literatures. Dumir et al. [7, 8] studied the non-linear vibrations of orthotropic circular
plates by the orthogonal point collocation method, in which the elastic foundations and
0022-460X/02/110141#12 $35.00/0 � 2002 Elsevier Science Ltd.
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a rigid central mass were considered. By using Kantorovich time-averaging method, C. L.
Huang gave a computational analysis of the non-linear oscillations of orthotropic annular
plates with variable thickness [9] and a circular isotropic plate with a concentric rigid mass
[12]. In reference [10], S. Huang presented an investigation for the non-linear vibration of
hinged orthotropic circular plates with a concentric rigid mass by using "nite element
method. However, to the authors' knowledge, little information has been found in the
literature regarding non-linear vibrations and thermal post-buckling of orthotropic circular
and annular plates subjected to in-plane loads, especially to an in-plane temperature rise. In
general, in-plane pressures, induced by in-plane temperature increase in a restrained plate
will weaken the #exural rigidity, then the fundamental frequency of the plate will be
decreased [11, 13]. Especially, when the temperature rise exceeds a certain value, or the
critical temperature, the plate will be in a buckled state. So, quantitative studies of thermal
vibration and buckling of plates are of great importance for the design of those structures
working in the environments with severe temperature change.

The present work is concerned with the axisymmetric non-linear vibration and thermal
post-buckling of a polar orthotropic annular plate with the edge immovably constrained
and subjected to a statically axisymmetric temperature rise. First, on the basis of von
Karman's plate theory and Hamilton's principle [14], the governing equations, in terms of
the in-plane displacements, of the problem are derived. Then, upon assuming that harmonic
vibrations of the system exist, the non-linear partial di!erential equations are converted
into two ordinary di!erential equations through elimination of the time variable by
Kantorovich's time-averagingmethod [9, 11}13]. Finally, by applying the shooting method
[15], the fundamental responses of non-linear vibration and thermal post-buckling of the
plate with di!erent values of the geometric and material parameters are given.

2. MATHEMATICAL FORMULATION

Consider a thin polar orthotropic annular plate, with inner radius a, outer radius b, and
constant thickness h. A concentric rigid massM

�
is attached rigidly along the inner edge as

shown in Figure 1. A cylindrical co-ordinate system (r, �, z) is located in the middle plane of
the plate. Immovably hinged as well as clamped outer boundary conditions of the plate will
be considered respectively. Assume that a steady and non-resource temperature rise "eld
¹"¹(r) is imposed on the plate in its natural state. Let us examine the free transverse
vibrations and buckling of the heated plate}rigid mass system with large axisymmetric
de#ections. On the basis of geometric non-linear theory of thin plates in von Karman's
sense, one obtains the strain}displacement relations
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where u(r, t) and w (r, t) denote the radial and transverse displacements of the middle plane,
t is the time variable, �

�
and �� are the radial and tangential strains respectively. Suppose that

the material of the plate is linearly thermal and elastic, the constitutive equations are given
as follows:
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Figure 1. Geometry, boundary conditions and co-ordinates of the plates.
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where �
�
and �� are the stresses, E

�
and E� the elastic moduli, ��� and �

�� the Poisson ratios,
�
�
and �� the thermal expansion coe$cients, in r and � directions respectively. Here, it is

assumed that these material constants of the plate do not change along with the
temperature rise.

Substituting equation (1) into equations (2) and (3) and integrating the stresses through
the thickness of the plate, we get the membrane forces and the bending moments of it as
follows:
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Here k"E�/E�
"���/��� , �"��/�� , D"E

�
h�/[12(1!������)], and C"12D/h� are de"ned,

where k is regidity ratio, � is the ratio of linear expansion coe$cients, and D is the #exural
rigidity of the plate.

By neglecting the in-plane as well as the rotary inertia and applying Hamilton's principle
[14], it can be shown [10, 11] that the non-dimensional equations of motion and the
corresponding boundary conditions for the large-amplitude vibrations of the heated
plate}rigid mass system have the forms of
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The non-dimensional quantities in the above equations are de"ned as

(c, x, ;,=)"(a, r, u, w)/b, �"(t/b�)(D/h)���, �"12(1!���)	��
�
¹

�
,

	"b/h, �"M
�
/(�ha�), 
"(��#�k)/(1#���), ��"��� , (12)

where  is the density of the plate,K is a parameter related to the outer edge constraints and
K"0, 1/�� represent the clamped and simply supported boundary conditions respectively.
¹

�
is a uniform temperature rise distribution, by which the temperature "eld of the plate can

be expressed as ¹ (r)"¹
�
�(x). For a speci"c temperature rise ¹(r), �(x) is a given function.

If one lets the inertia terms equal zero and denotes; (x, �)"; (x) and=(x, �)"=(x) in
equations (8)}(11), then the governing equations of thermal post-buckling of the heated
plate can be obtained.

3. APPROXIMATE ANALYSIS

It is di$cult to get any exact solutions of the dynamic equations (8)}(11) because of the
inclusion of the coupled as well as the non-linear terms of the derivatives of the
displacements. In the analysis and solution of this kind of equations two approximate
methods are commonly used. One of them is known as &&assumed-space-mode'' solution,
generally, which is achieved by implementing some assumed spatial shape functions and by
using a variational method to eliminate the spatial variables and reduce the partial
di!erential equations to ordinary ones only including time variable [7, 8, 10]. Another
method is to "nd an &&assumed-time-mode'' solution. Upon assuming that a harmonic
response for the non-linear vibrations exists, the time variable is eliminated by using
a Kantorovich averaging method [9, 12, 13] and a non-linear boundary value problem is
obtained. In the present investigation, the latter method is employed.
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Assuming that the vibration is prior to the buckling of the plate, i.e., �(�
��
, where �

��
is

the critical temperature parameter, and that harmonic response of equations (8)}(11) exists,
the displacements ;(x, z) and =(x, z) can be expressed as

;(x, �)"�
�
(x)#�(x) cos� ��, =(x, �)"�(x) cos��, (13)

where � is the non-dimensional frequency of the system, �(x) and � (x) are the shape
functions corresponding to displacement; and= respectively. �

�
(x) is the solution of the

static plane thermal stress problem
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where the prime as the superscript denotes the ordinary di!erentiation with respect to x.
Substituting harmonic responses (13) into equation (8) and by using equations (14) and

(15), one obtains the homogenous ordinary di!erential equation
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Equation (13) cannot satisfy equation (9) identically for all values of � and, moreover,
a residual may exist. So, a Kantorovich time-averaging method is applied to equation (9),
yielding the homogenous ordinary di!erential equation
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Substituting equation (13) into equations (10) and (11) gives the boundary conditions
about shape functions � (x) and � (x) as

�(x)"0, ��(x)"0, ���� (x)#
1

x
��� (x)!

�c��

2
�(x)"0 at x"c, (21)

� (x)"0, � (x)"0, �� (x)#K���(x)"0 at x"1. (22)

In addition to the boundary conditions, a normal relationship is proposed for the system,
i.e.,

� (c)"A/	, (23)

where A"	� (c)"w (a, 0)/h is the non-dimensional transverse amplitude of the inner edge
of the plate. Equations (16)}(22) with normalization condition (23) constitute a non-linear
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boundary value problem including dynamic parameter � and temperature, or load
parameter, �.

Letting �"0, and C
�
"C

�
"12	� in equations (16)}(23), the governing equations of

thermal post-buckling of the heated plate can be obtained. The corresponding fundamental
post-buckling responses are (;,=)"(�

�
#�, �).

4. SHOOTING METHOD OF THE BOUNDARY-VALUE PROBLEM

It is di$cult to obtain analytical solutions of the non-linear boundary-value problem of
(16)}(23). Here, a shooting method, or trial and error method [11, 12, 15] is employed to get
a numerical solution of the problem. For convenience, equations (16)}(23) are written in
a standard form, a system of "rst order non-linear ordinary di!erential equations, as
follows:
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Let us consider the initial problem corresponding to boundary-value problem (24)}(25)
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missing initial values of Y at x"c. A solution of initial problem (33)}(34) can be
symbolically expressed as
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For a prescribed value of A, the components of V are searched for such that solution (35)
also satis"es boundary condition (25b), i.e.,

B
�
Z(1; A, V, �)"�0, 0, 0��. (36)

Clearly, if V"V* is a root of equation (36), the solution for the boundary-value problem
(24)}(25) is then obtained as

Y (x)"Z(x; A, V*, �). (37)

Therefore, a harmonic response of equations (8)}(11) is obtained in the form of equation
(13).

In order to "nd the solution of the thermal post-buckling of the plate, a similar procedure
as just mentioned above can be established through letting C

�
"C

�
, �"0 and y

�
"� in

equations (24) and (25).

5. NUMERICAL RESULTS AND DISCUSSIONS

In this paper, only the case of a uniform temperature rise is considered. Then we have
�(x),1. It is easy to "nd that the solution of equations (14) and (15) is
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where B"(1!
)�/(12	�). By employing a fourth order Runge}Kutta method with
variable steps to integrate equation (35) and, at the same time, by using a Newton}Raphson
method to "nd the root <* of algebraic equation (36), numerical solutions of equations (24)
and (25) have been obtained. An A-dependent family of solutions for equations (24) and (25)
are arrived at by analytic continuation [9, 15], if parameter A is repeatedly increased by
a given small step.

Throughout the following numerical computation, let geometric parameters 	"30, and
Poisson ratio ��"0)3. A relative error limit, �"10�	, was taken to warrant that both the
numerical integration of equation (35) and the successive correction of equation (36) were
carried out until the error norm became less than �. For an unheated (�"0) circular plate
(c"0)0001) without rigid mass (�"0), a comparison of the values of linear fundamental
frequency in this paper with those obtained by Ritz's method in reference [5] is presented
below. For prescribed values of the rigidity ratio k"0)75, 1)0, 10)0, the corresponding
fundamental frequencies in this paper are �"4)5421, 4)9351, 11)286 and those in reference
[5] are �"4)5418, 4)9351, 11)286, which shows an excellent agreement with the published
results.

For some prescribed values of the rigidity parameter k and the parameter of thermal
expansion coe$cient �, the characteristic curves of the linear fundamental frequency
� versus the temperature parameter � of the clamped plate with c"0)1, �"2)0 are plotted
in Figure 2. It is found that the frequency increases monotonously with the increment of
values of parameter k and decreases with that of temperature rise parameter �. The linear
frequency becomes zero when temperature parameter � reaches its critical value �

��
, over

which the plate will be in a thermally buckled state. Figure 3 also shows similar



Figure 2. Temperature rise parameter � versus the linear frequency � for the clamped plate with c"0)1, �"2)0:
*�*, k"1)0, �"10; *�*, k"2)0, �"0)5; *�**, k"3)0, �"0)3; *�*, k"4)0, �"0)25; *�*, k"5)0;
�"0)2.

Figure 3. Temperature rise parameter � versus linear fundamental frequency � for the clamped plate with
c"0)1, k"2)0, �"0)5: *�*, �"0; *�*, �"5; *�**, �"10; *�**, �"15; *�*, �"20.
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characteristic relations between � and � for the clamped plate with di!erent values of
rigid mass parameter �, from which it can be seen that the frequency decreases with the
increase of value of �. As expected, the critical temperature parameter �

��
is independent of

parameter �.
The non-linear responses of fundamental frequency � versus the non-dimensional

amplitude A for the heated clamped as well as the simply supported annular plates with
di!erent magnitudes of � are shown, in Figures 4 and 5 respectively. It can also be found
that the fundamental frequencies decrease when the temperature increases. The e!ect of
temperature parameter � on the frequency � is more signi"cant when the amplitudeA tends
to be in"nitesimal. Nevertheless, it decreases with the increment of the values of the
amplitude A. Figure 6 illustrates the relationship of A&� of a simply supported plate



Figure 4. Non-linear fundamental frequency responses of the clamped plate with c"0)1, k"2)0, �"0)5 and
�"2)0 for some given values of �:*�*, �"19;*�**, �"16;*�**, �"12;*�*, �"8;*�*, �"4;*�*,
�"0.

Figure 5. Non-linear fundamental frequency responses of the simply supported plate with c"0)1, k"2)0,
�"0)5 and �"2)0 for some prescribed values of �: *	*, �"6; *�*, �"4; *�*, �"2; *�*, �"0; *�*,
�"!2; *�*, �"!4.
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without temperature rise for some prescribed values of k. For some prescribed pairs of
values of k and �, Figure 7 shows the non-linear characteristic relationships between
amplitude parameterA and frequency parameter � of a clamped annular plate with �"5)0.
It is obvious that non-linear frequency increases with the increments of rigidity parameter k.
Also, from the curves in Figures 4}7 one can "nd that the characteristics of the
amplitude}frequency responses of the plate}rigid mass system are similar to that of
a hard-spring Du$ng's system.

Let C
�
"C

�
"12	�, �"0 and y

�
"� in equations (24) and (25); through a similar

procedure the thermal post-buckling responses of the plate have been obtained. For some
prescribed pairs of values of (k, �), the secondary equilibrium paths in terms of



Figure 6. Non-linear fundamental frequency responses of simply supported plate with c"0)1, �"0)0, and
�"2)0 for some prescribed values of k:2�*, k"10;*�**, k"8;*�*, k"6;*�*, k"4;*�*, k"2;*	*,
k"0)5.

Figure 7. Non-linear fundamental frequency responses of the clamped plate with c"0)1, �"5)0 and �"2)0 for
some prescribed values of k and �: *�*, k"0)5, �"2)0; *�*, k"2)0, �"0)5; *�*, k"4)0, �"0)25; *�*,
k"6)0, �"0)167; *�*, k"8)0, �"0)125; *�*, k"10)0, �"0)1.
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non-dimensional buckled de#ection A and temperature rise parameter � of a clamped
annular plate are plotted in Figure 8. The same results of the simply supported plate are also
shown in Figure 9. Apparently, it can be found that each of these curves bifurcates at the
point (A, �)"(0, �

��
).

6. CONCLUSIONS

Based on von Karman's plate theory and Hamilton's principle the governing equations,
in terms of the displacements of the middle plane, of non-linear vibration and thermal



Figure 8. The thermal buckled equilibrium paths of the clamped plate with c"0)1 for some prescribed values of
k and �:*	*, k"0)5, �"2)0; *�*, k"2)0, �"0)5;*�*, k"4)0, �"0)25; *�*, k"6)0, �"0)167; *�*,
k"8)0, �"0)125; *�*, k"10)0, �"0)1.

Figure 9. The thermal buckled equilibrium paths of the simply supported plate with c"0)1 for some prescribed
values of k and �:*	*, k"0)5, �"2)0;*�*, k"2)0, �"0)5;*�*, k"4)0, �"0)25;*�*, k"6)0, �"0)167;
*�*, k"8)0, �"0)125; *�*, k"10)0, �"0)1.
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post-buckling of a heated orthotropic annular plate with rigidly attached central rigid mass
are developed. By using Kantorovich's time-averaging method the obtained non-linear
partial di!erential equations are transformed into a boundary value problem of non-linear
ordinary di!erential equations. The non-linear responses of harmonic vibrations of the
plate}rigid mass system and also the thermal buckled con"gurations of the plate are
numerically obtained by a shooting method. The e!ects of temperature rise, material
rigidity, and central rigid mass on the fundamental frequencies of the clamped and simply
supported plate are investigated and the corresponding numerical results are shown in the
characteristic curves respectively. The characteristics exhibited by the responses of the plate
are similar to those of a hard-spring Du$ng system. For both kinds of the outer edge
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constraints, the fundamental frequency is found to decrease with the increasing values of
temperature rise. This is due to the fact that the compressive membrane stresses developed
by the temperature rise will reduce the transverse rigidity of the plate. So, from this
standpoint one can realize a control over the vibration frequencies of elastic elements just
by adjusting the temperature change imposed on them. The thermal post-buckling analysis
of the heated orthotropic annular plate has been carried out also by means of the same
numerical procedure. For the plate with some prescribed values of the geometrical and
material parameters, secondary equilibrium paths in terms of the non-dimensional central
de#ections and the temperature rise are plotted.
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